Unit 8 Problem Set

- Describe the kinetic molecular theory of gases and how it predicts the macroscopic behavior of gases
- Qualitatively predict the behavior of gases based on the simple gas laws, and perform quantitative calculations using the Ideal Gas Law
- Perform calculationsformixtures of gases using Dalton's Law and the concept of a mole fraction

Read more about this topic: Chapter 9

1. A typical barometric pressure in Denver, Colorado, is 621.1 mm Hg . What is this pressure in atmospheres?
2. A typical barometric pressure in Denver, Colorado, is 624.7 mm Hg . What is this pressure in bar?
3. A typical barometric pressure in Denver, Colorado, is 611.7 mm Hg . What is this pressure in kPa ?
4. A typical barometric pressure in Denver, Colorado, is 617.7 mm Hg . What is this pressure in psi?
5. A medical laboratory catalog describes the pressure in a cylinder of a gas as 15.52 MPa . What is this pressure in psi?
6. Answer each of the following questions referencing this manometer

a. The pressure of a sample of gas is measured at sea level with a closed-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in torr.
b. The pressure of a sample of gas is measured at sea level with a closed-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in atm.
7. Answer each of the following questions referencing this manometer

Unit 8 Problem Set

a. The pressure of a sample of gas is measured at sea level with a closed -end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in kPa .
b. The pressure of a sample of gas is measured at sea level with a closed -end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in bar.
8. Answer each of the following questions referencing this manometer

a. The pressure of a sample of gas is measured at sea level with a open-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in torr.
b. The pressure of a sample of gas is measured at sea level with a open-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in atm

Unit 8 Problem Set

9. Answer each of the following questions referencing this manometer

a. The pressure of a sample of gas is measured at sea level with a open-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in kPa
b. The pressure of a sample of gas is measured at sea level with a open-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg , determine the pressure of the gas in bar
10. A spray can is used until it is empty except for the propellant gas, which has a pressure of 1,351 torr at $24.7^{\circ} \mathrm{C}$. If the can is thrown into a fire $\left(\mathrm{T}=464^{\circ} \mathrm{C}\right)$, what will be the pressure in the hot can (in torr)?
11. A balloon inflated with 7 breaths of air has a volume of 2.3 L . At the same temperature and pressure, what is the volume of the balloon if 3 more same-sized breaths are added to the balloon?
12. How many grams of CO_{2} are present if a 0.101 L vessel of gas is at 302 torr and $26^{\circ} \mathrm{C}$? Watch a video of a similar problem
13. How many grams of $\mathrm{C}_{2} \mathrm{H}_{4}$ are present if a 8.83 L vessel of gas is at 382 kPa and 25 K ? Watch a video of a similar problem
14. How many grams of Ar are present if a 211 mL vessel of gas is at 253.01 mm Hg and $50.6^{\circ} \mathrm{C}$? Watch a video of a similar problem
15. While resting, the average $70-\mathrm{kg}$ human consumes 13.83 L of pure O_{2} per hour at $25.0^{\circ} \mathrm{C}$ and 100.0 kPa . How many moles of O_{2} are consumed by a 70 kg person while resting for 1.0 h ?
16. What is the molar mass of a gas if 0.294 g of the gas occupies a volume of 122 mL at a temperature $138^{\circ} \mathrm{C}$ and a pressure of 767 torr?
Watch a video of a similar problem
17. A sample of gas isolated from unrefined petroleum contains $90.0 \% \mathrm{CH}_{4}, 8.9 \% \mathrm{C}_{2} \mathrm{H}_{6}$, and $1.1 \% \mathrm{C}_{3} \mathrm{H}_{8}$ at a total pressure of 305.1 kPa . What is the pressure (in kPa) of CH_{4} in the sample?
18. What volume (in L) of oxygen at $148{ }^{\circ} \mathrm{C}$ and a pressure of 127.8 kPa is produced by the decomposition of 131.6 g of BaO_{2} to BaO and O_{2} ?

Unit 8 Problem Set

19. A balloon filled with helium gas takes 4.4 hours to deflate to 30% of its original volume. How long will it take for an identical balloon filled with the same volume of hydrogen gas (instead of helium) to decrease its volume by 30% ?
20. A gas of unknown identity diffuses at a rate of $84.2 \mathrm{~mL} / \mathrm{s}$ in a diffusion apparatus in which carbon dioxide diffuses at the rate of $109 \mathrm{~mL} / \mathrm{s}$. Calculate the molecular mass of the unknown gas.
